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Overview

• Computer programs that play 2-player games

– game-playing as search

– with the complication of an opponent

• General principles of game-playing and search

– game tree

– minimax principle; impractical, but theoretical basis for analysis

– evaluation functions; cutting off search; replace terminal leaf utility fn with eval fn

– alpha-beta-pruning

– heuristic techniques

– games with chance

• Status of Game-Playing Systems

– in chess, Go, checkers, backgammon, Othello, etc, computers routinely defeat 

leading world players.

• Motivation: multiagent competitive environments

– think of “nature” as an opponent

– economics, war-gaming, medical drug treatment



Not Considered:  Physical games like tennis, croquet, 
ice hockey, etc.
(but see “robot soccer” http://www.robocup.org/)



Search versus Games

• Search – no adversary

– Solution is a path from start to goal, or a sequence of actions from start to goal

– Heuristics and search techniques can find optimal solution

– Evaluation function: estimate of cost from start to goal through given node

– Actions have cost

– Examples: path planning, scheduling activities

• Games – adversary

– Solution is strategy 

• strategy specifies move for every possible opponent reply.

– Time limits force an approximate solution

– Evaluation function: evaluate “goodness” of game position

– Board configurations have utility

– Examples: chess, Go, checkers, Othello, backgammon 



Solving 2-player Games

• Two players, fully observable environments, deterministic, turn-taking, 

zero-sum games of perfect information

• Examples: e.g., chess, checkers, tic-tac-toe

• Configuration of the board = unique arrangement of “pieces”

• Statement of Game as a Search Problem:

– States = board configurations

– Operators = legal moves. The transition model

– Initial State = current configuration

– Goal = winning configuration

– payoff function (utility)= gives numerical value of outcome of the game

• Two players, MIN and MAX taking turns. MIN/MAX will use search tree to 

find next move

• A working example: Grundy's game

– Given a set of coins, a player takes a set and divides it into two unequal 

sets. The last player who cannot do uneven split, loses.

– What is a state? Moves? Goal?



Grundy’s game - special case of nim



Game Trees: Tic-tac-toe

How do we search this tree to find the optimal move?



The Minimax  Algorithm

• Designed to find the optimal strategy (AND-OR search space!) or just 

best first move for MAX

– Optimal strategy is a solution tree

Brute-force:

– 1. Generate the whole game tree to leaves

– 2. Apply utility (payoff) function to leaves

– 3.  Back-up values from leaves toward the root:

• a Max node computes the max of its child values

• a Min node computes the min of its child values

– 4. When value reaches the root: choose max value and the 

corresponding move.

Minimax: 

Search the game-tree in a DFS manner to find the value of the root.



Game Trees



Two-Ply Game Tree



Two-Ply Game Tree



Two-Ply Game Tree

The minimax decision

Minimax maximizes the utility for the worst-case outcome for max

A solution tree is highlighted



Properties of minimax

• Complete?

– Yes (if tree is finite).

• Optimal?

– Yes (against an optimal opponent).

– Can it be beaten by an opponent playing sub-optimally?

• No.  (Why not?)

• Time complexity?

– O(bm)

• Space complexity?

– O(bm)   (depth-first search, generate all actions at once)

– O(m)   (backtracking search, generate actions one at a time)



Game Tree Size

• Tic-Tac-Toe

– b ≈ 5 legal actions per state on average, total of 9 plies in game.

• “ply” = one action by one player, “move” = two plies.

– 59 = 1,953,125

– 9! = 362,880  (Computer goes first)

– 8! = 40,320 (Computer goes second)

 exact solution quite reasonable

• Chess

– b ≈ 35 (approximate average branching factor)

– d ≈ 100 (depth of game tree for “typical” game)

– bd ≈ 35100 ≈ 10154 nodes!!

 exact solution completely infeasible

• It is usually impossible to develop the whole search tree. Instead develop 

part of the tree up to some depth and evaluate leaves using an evaluation fn

• Optimal strategy (solution tree) too large to store.



• Cannot afford to search til the terminal nodes

• Idea : 

– Use a heuristic eval fn for states that gives estimate of expected utility 

of the node

– Leaf nodes must be correctly evaluated – loss vs win

– For internal nodes, must be closely correlated with expected utility

– Abs values not important, just relative values

• If n1 is better than n2, then f(n1)>f(n2)

• Divide states into equivalence classes based on a set of features

– Each eq class has some nodes that lead to win, some to loss, some to 

draw

– This defines expected utility

– Too hard to compute

– Instead estimate

• e.g. simplest : probability of winning from given position

• or something more sophisticated…

Heuristic Evaluation Functions



Heuristic Evaluation Functions

• An Evaluation Function:

– Estimates how good the current board configuration is for a player

– Typically, one figures how good it is for the player, and how good it 
is for the opponent, and subtracts the opponents score from the 
player

– Othello: Number of white pieces - Number of black pieces

– Chess:  Value of all white pieces - Value of all black pieces

• Typical values from -infinity (loss) to +infinity (win) or [-1, +1].

• If the board evaluation is X for a player, it’s -X for the opponent

• Example: 

– Evaluating chess boards 

– Checkers

– Tic-tac-toe



Applying MiniMax to tic-tac-toe

• The static evaluation function heuristic



Backup Values







Feature-based evaluation functions

• Features of the state

• Features taken together define categories 

(equivalence) classes

• Expected value for each equivalence class

– Too hard to compute

• Instead

– Evaluation function = weighted linear combination of feature 

values







MINIMAX vs H-MINIMAX

Q : why not just apply h fn at root node?



Backup Values



Alpha-Beta Pruning

Exploiting the Fact of an Adversary

• If a position is provably bad:

– It is NO USE expending search time to find out exactly how bad, if 

you have a better alternative

• If the adversary can force a bad position:

– It is NO USE expending search time to find out the good positions 

that the adversary won’t let you achieve anyway

• Bad = not better than we already know we can achieve elsewhere.

• Contrast normal search:

– ANY node might be a winner.

– ALL nodes must be considered.

– (A* avoids this through knowledge, i.e., heuristics)



Alpha Beta Procedure

• Idea: 

– Do depth first search to generate partial game tree, 

– Give static evaluation function to leaves,

– Compute bound on internal nodes.

• ,  bounds:

–  value for max node means that max real value is at least .

–  for min node means that min can guarantee a value no more than .

• Computation:

– Pass current / down to children when expanding a node

– Update (Max)/(Min) when node values are updated

•  of MAX node is the max of children seen.

•  of MIN node is the min of children seen.



Alpha-Beta Example

[-∞, +∞]

[-∞,+∞]

Range of possible values

Do DF-search until first leaf



Alpha-Beta Example (continued)

[-∞,3]

[-∞,+∞]

[-∞, +∞]





Alpha-Beta Example (continued)

[-∞,3]

[-∞,+∞]



Alpha-Beta Example (continued)

[3,+∞]

[3,3]



Alpha-Beta Example (continued)

[-∞,2]

[3,+∞]

This node is

worse for MAX[-∞,+∞]


[3,3]



Alpha-Beta Example (continued)

[-∞,2]

[3,14]

[3,3] [-∞,14]

[-∞,+∞]





Alpha-Beta Example (continued)

[-∞,5]

[3,5]

[3,3] [-∞,2]



Alpha-Beta Example (continued)

[-∞,2]

[3,3]

[3,3] [-∞,2]



Alpha-Beta Example (continued)

[2,2]

[3,3]

[3,3] [-∞,2]



Tic-Tac-Toe Example with Alpha-Beta Pruning

Backup Values



Alpha-beta Algorithm

• Depth first search

– only considers nodes along a single path from root at any time

 =  highest-value choice found at any choice point of path for MAX

(initially,  =  −infinity)

 = lowest-value choice found at any choice point of path for MIN

(initially,  =  +infinity)

• Pass current values of  and  down to child nodes during search.

• Update values of  and  during search:

– MAX updates  at MAX nodes

– MIN updates  at MIN nodes



When to Prune 

• Prune whenever  ≥ .

– Prune below a Max node whose alpha value becomes greater than 

or equal to the beta value of its ancestors.

• Max nodes update alpha based on children’s returned values.

– Prune below a Min node whose beta value becomes less than or 

equal to the alpha value of its ancestors.

• Min nodes update beta based on children’s returned values.



Alpha-Beta Example Revisited

, , initial values

Do DF-search until first leaf

=−

 =+

=−

 =+

, , passed to children



Alpha-Beta Example (continued)

MIN updates , based on children

=−

 =+

=−

 =3



Alpha-Beta Example (continued)

=−

 =3
MIN updates , based on children.
No change.

=−

 =+



Alpha-Beta Example (continued)

MAX updates , based on children.

=3

 =+

3 is returned
as node value.



Alpha-Beta Example (continued)

=3

 =+

=3

 =+

, , passed to children



Alpha-Beta Example (continued)

=3

 =+

=3

 =2

MIN updates ,
based on children.



Alpha-Beta Example (continued)

=3

 =2

 ≥ ,
so prune.

=3

 =+



Alpha-Beta Example (continued)

2 is returned
as node value.

MAX updates , based on children.
No change. =3

 =+



Alpha-Beta Example (continued)

,
=3

 =+

=3

 =+

, , passed to children



Alpha-Beta Example (continued)

,

=3

 =14

=3

 =+
MIN updates ,
based on children.



Alpha-Beta Example (continued)

,

=3

 =5

=3

 =+
MIN updates ,
based on children.



Alpha-Beta Example (continued)

=3

 =+
2 is returned
as node value.

2



Alpha-Beta Example (continued)

Max calculates the 

same node value, and 

makes the same move!

2



Alpha Beta Practical Implementation

• Idea: 

– Do depth first search to generate partial game tree

– Cutoff test :

• Depth limit

• Iterative deepening

• Cutoff when no big changes (quiescent search)

– When cutoff, apply static evaluation function to leaves

– Compute bound on internal nodes

– Run - pruning using estimated values

– IMPORTANT : use node values of previous iteration to order 

children during next iteration



Example

3 4 1 2 7 8 5 6

-which nodes can be pruned?



Answer to Example

3 4 1 2 7 8 5 6

-which nodes can be pruned?

Answer:  NONE! Because the most favorable nodes for both are 

explored last (i.e., in the diagram, are on the right-hand side).

Max

Min

Max



Second Example

(the exact mirror image of the first example)

6 5 8 7 2 1 3 4

-which nodes can be pruned?



Answer to Second Example

(the exact mirror image of the first example)

6 5 8 7 2 1 3 4

-which nodes can be pruned?

Min

Max

Max

Answer:  LOTS! Because the most favorable nodes for both are 

explored first (i.e., in the diagram, are on the left-hand side).



Effectiveness of Alpha-Beta Search

• Worst-Case

– Branches are ordered so that no pruning takes place. In this case alpha-beta 

gives no improvement over exhaustive search

• Best-Case

– Each player’s best move is the left-most alternative (i.e., evaluated first)

– In practice, performance is closer to best rather than worst-case

• E.g., sort moves by the remembered move values found last time.

• E.g., expand captures first, then threats, then forward moves, etc.

• E.g., run Iterative Deepening search, sort by value last iteration.

• Alpha/beta best case is O(b(d/2)) rather than O(bd) 

– This is the same as having a branching factor of sqrt(b), 

• (sqrt(b))d =  b(d/2) (i.e., we have effectively gone from b to square root of b)

– In chess go from b ~ 35  to  b ~ 6

• permitting much deeper search in the same amount of time

– In practice it is often b(2d/3)



Final Comments about Alpha-Beta Pruning

• Pruning does not affect final results!!! Alpha-beta pruning returns 

the MiniMax value!!!

• Entire subtrees can be pruned.

• Good move ordering improves effectiveness of pruning

• Repeated states are again possible.

– Store them in memory = transposition table

– Even in depth-first search we can  store the result of an evaluation 

in a hash table of previously seen positions. Like the notion of 

“explored” list in graph-search



Heuristics and Game Tree Search: limited  horizon

• The Horizon Effect

– sometimes there’s a major “effect” (such as a piece being captured) 

which is just “below” the depth to which the tree has been expanded.

– the computer cannot see that this major event could happen because it 

has a “limited horizon”.

– there are heuristics to try to follow certain branches more deeply to detect 

such important events

– this helps to avoid catastrophic losses due to “short-sightedness”

– push unavoidable large neg events “over” the horizon at additional cost

• Heuristics for Tree Exploration

– it may be better to explore some branches more deeply in the allotted 

time

– various heuristics exist to identify “promising” branches

• Search versus lookup tables 

– (e.g., chess endgames)



Iterative (Progressive) Deepening

• In real games, there is usually a time limit T on making a move

• How do we take this into account? 

• Using alpha-beta (DFS) we cannot use “partial” results with any 

confidence unless the full breadth of the tree has been searched

– So, we could be conservative and set a conservative depth-limit 

which guarantees that we will find a move in time < T

• disadvantage is that we may finish early, could do more search

• In practice, iterative deepening search (IDS) is used

– IDS runs depth-first search with an increasing depth-limit

– when the clock runs out we use the solution found at the previous 

depth limit 



Multiplayer Games

• Multiplayer games often involve alliances: If A and B are in a weak position they can 

collaborate and act against C

• If games are not zero-sum, collaboration can also occur in two-game plays: if (1000,1000_

Is a best payoff for both, then they will cooperate towards getting there and not towards minimax value.



In real life there are 

many unpredictable 

external events

A game tree in Backgammon

must include chance nodes



Schematic Game Tree for Backgammon Position

• How do we evaluate  good move?

• By expected utility leading to expected 

minimax

• Utility for MAX is the highest expected

value of child nodes

• Utility for MIN is the lowest expected

value of child nodes

• Chance node take the EXPECTED

value of their child nodes.





Evaluation functions for stochastic games

CHANCE

MIN

MAX

2 2 3 3 1 1 4 4

2 3 1 4

.9 .1 .9 .1

2.1 1.3

20 20 30 30 1 1 400 400

20 30 1 400

.9 .1 .9 .1

21 40.9

a1 a2 a1 a2

• Sensitivity to the absolute values

• The evaluation function should related to the probability of

winning from a position, or to the expected utility from the position

• Complexity:  O((bn)m) where m is the depth and n is branching of chance nodes; 

o deterministic games – O(bm)

















• An alternative: Monte Carlo simulations: 

– Play thousands of games of the program against itself using random dice 

rolls. Record the percentage of wins from a position.



Monte Carlo Tree Search (MCTS)

• Game tree very large, accurate eval fn not available. Example GO

• MC simulation/sampling

– Many thousands of random self-play games

– At the end of each simulation, update node/edge values

• Build a tree 

– incrementally : each simulation add highest non-tree node to tree

– asymmetrically: pursue promising moves

• At each node, solve n-armed bandit problem 

– exploitation vs exploration

– minimize regret

• Tree policy : select child/action using edge values Xi + C*sqrt(ln(N)/Ni)

– Xi = exploitation term, C*sqrt(ln(N)/Ni) = exploration term

• Default policy : MC simulation

• winrate values of nodes will converge to true values, as N→∞

• When time is up, use a move with highest winrate

• Advantage – don’t need any heuristic fn; will converge faster if decent eval fn





AlphaGo

• MCTS simulation

• Policy/value estimation computed by (deep – 13 layers) neural network

– Learned from 30 million human game samples

• Policy/value estimation alone (without MCTS) plays on avg level

• MCTS and policy/value eval fn equally important



Summary

• Game playing is best modeled as a search problem

• Game trees represent alternate computer/opponent moves

• Evaluation functions estimate the quality of a given board configuration 
for the Max player. 

• Minimax is a procedure which chooses moves by assuming that the 
opponent will always choose the move which is best for them

• Alpha-Beta is a procedure which can prune large parts of the search 
tree and allow search to go deeper 

• Human and computer (board) game playing moving in different separate 
directions : computer beat humans in most games and are getting 
better.




